
Journal of Engineering Mathematics36: 311–326, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

Analysis of flux flow and the formation of oscillation marks in the
continuous caster

JAMES M. HILL1, YONG HONG WU2 and BENCHAWAN WIWATANAPATAPHEE2

1Department of Mathematics, The University of Wollongong, Wollongong, NSW 2500, Australia
2School of Mathematics and Statistics, Curtin University of Technology, WA 6845, Australia

Received 8 January 1996; accepted in revised form 2 February 1999

Abstract. In the industrial process of continuous steel casting, flux added at the top of the casting mould melts
and forms a lubricating layer in the gap between the steel and the oscillating mould walls. The flow of flux in the
gap plays an essential role in smoothing the casting operation. The aim of the present work is to better understand
the mechanics of flux flow, with an emphasis on such problems as how the flux actually moves down the mould,
the physical parameters governing the consumption rate of the flux and the geometry of the lubricating layer. The
problem considered is a coupled problem of liquid flow and multi-phase heat transfer. In the first part of the paper,
the formation of the lubricating layer is analysed and a set of equations to describe the flux flow is derived. Then,
based on an analysis of the heat transfer from the molten steel through the lubricating layer to the mould wall, a
system of equations correlating the temperature field in the steel and flux with the geometry of the lubricating layer
is derived. Subsequently, the equations for the flux flow are coupled with those arising from heat-transfer analysis
and then a numerical scheme for the calculation of the consumption rate of flux, the geometry of the lubricating
layer and the solidification surface of the steel is presented.
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1. Introduction

In the industrial process of continuous steel casting, molten steel is poured continuously into a
water-cooled mould, where intense cooling causes a thin solidified steel shell to form around
the edges of the steel, leaving a large molten core inside the shell. The steel shell is then
withdrawn from the bottom of the mould under support from closely spaced rolls. Figure 1
shows the essential features of the process. To facilitate this process and to prevent the molten
steel from sticking to the mould wall, the mould wall oscillates vertically and mould powder
is added at the top of the mould. The mould powder, being lighter than steel, melts and forms
a liquid pool on the steel surface which is then drawn down between the mould wall and the
steel providing lubrication, as a result of the oscillation. It is generally recognized that mould
oscillation also causes small imperfections (notches) on the surface of the steel (see for ex-
ample [1] and [2]). Thus, flux flow occurs between the mould wall and the casting surface
which has regularly spaced notches. In order to optimize the process, a proper understand-
ing of the flux flow is important, which can only be achieved with a proper analysis of the
oscillation marks.
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Figure 1. The continuous casting process.

Much of the physics of the casting process is understood (see for example [3–5] and various
mathematical models have been developed to analyse the flux flow and evaluate the consump-
tion rate of flux. The models due to Bland [6] and Fowkes and Woods [7], although promising,
are incomplete and further work is still required. In the Bland [6] model, an important variable
h0(t

∗), which is the thickness of the flux layer at the top of the mould, needs to be prescribed
and is determined by a process of trial and error. Accordingly, the application of this model
is limited and the necessity to guessh0(t

∗) is unrealistic. Although the Fowkes-and-Woods
model [7] overcomes this shortcoming, in that it leads to a unique determination ofh0(t

∗),
the coupling of the flux flow with the temperature field is omitted altogether. In addition, in
both models, the presence of oscillation notches on the steel surface is not taken into account.
Incorporating these notches we are led to an entirely different equation for the determination
of the thickness of the flux channel and, consequently, the consumption rate of flux and this is
the purpose of the present paper.

Here we present a model which takes into account the formation of oscillation notches
on the steel surface and which couples the flux flow with the heat-transfer problem, so that
the consumption rate of flux and the thickness of the flux flow channel can be evaluated
accurately. The formation of oscillation marks is also considered by Kinget al. [8]. These
authors treat the solidifying steel as a temperature-dependent viscous beam which is bent by
the high pressures generated in the liquid flux. An initial analysis of their model is made,
without a detailed numerical treatment. Our formulation is similar to that of Kinget al. [8],
except that our analysis is based on a temperature-dependent viscosity, in which we couple the
temperature distribution with the flux flow, and for which we present a full numerical solution
in the presence of oscillation.

In the following section, we propose a possible mechanism to explain the formation of
oscillation marks and, accordingly, we deduce Equation (2.2) relating the thicknessh(z∗, t∗)
of flux flow channel at any depth with the thicknessh0(t

∗) at the solidification point of steel.
In the section thereafter we establish equations relating the flux flow rate with the thickness
of the flow channel for both the upper and lower parts separated by the solidification point
of steel. Based on mass conservation, we derive in Section 4 the cubic Equation (4.3) for the
determination ofh0(t

∗), obtained by matching the equations for the flow rates in the upper and
lower zones. The resulting equation forh0(t

∗) is highly dependent on the temperature in the
flux. The heat-transfer analysis is presented in Section 5. In Section 6 of the paper we briefly
describe an iterative scheme for the solution of the coupled mould oscillation-flux flow-heat-
transfer problem for the case of neglecting the latent heat of the flux and numerical results are
presented in the final section of the paper.
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Figure 2. Schematic diagram showing the formation of
oscillation marks.

Figure 3.Schematic diagram showing the geo-
metry of the flux channel.

.

2. The geometric form of the flux flow channel

Below the solidification point of steel, flux flows in the gap between the mould wall and the
surface of the casting steel. Thus, the geometry of the flow channel is essentially determined
by the surface contour of the casting. Since it has been observed in practice that the finished
steel surface has oscillation marks in the form of regularly spaced notches, several possible
mechanisms have been proposed to explain the formation of these notches (see for example
[2]). In this section we deduce a formula to describe the thicknessh(z∗, t∗) of the flow channel
at any depthz∗ in terms of the thickness at the solidification point. We suppose that the
solidified steel shell is covered by molten steel without a rigid solid skin on the top surface and
that the solidified steel shell is withdrawn downwards with constant casting speedU . Under
these assumptions, the formation of oscillation marks is shown schematically in Figure 2. We
remark here that in the present model the steel solidification point is considered to be time de-
pendent and for simplicity this time-dependent nature is not shown in the schematic diagram.
The determination of the solidification point is based on the temperature field computed from
thermal analysis which will be detailed in Sections 5 and 6. We also remark that, as the profile
of the flux in the upper zone above the steel solidification point is not needed in the calculation
of oscillation marks, the present work will not concern determination of the flux profile in the
upper zone and thus the geometry of the flux layer shown in Figure 2 is a sketch only.

During the downward stroke of the mould wall, flux is dragged into the lubrication zone
and the molten steel is pushed away from the mould wall by the positive pressure generated in
the flux and thus a flow channel is formed. On increasing the downward speed (stages 1–4), the
thickness of the channel increases. However, with decreasing downward speed (stages 4–7),
the thickness of the channel decreases. During the upstroke of the mould wall, one may expect
that flux will be carried upwards. However, suction forces within the liquid flux layer reduce
the width of the liquid flux layer to zero and the molten steel entirely fills the upper part of
the mould and thus prevents a significant amount of flux being dragged upwards. The molten
steel above the solidification point thus acts as the valve of a pump, allowing the liquid flux
moving downward but prevent it moving upward. This pumping mechanism has been analysed
in detail by Fowke and Wood [7] and thus we will not repeat the details here. According to
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this analysis, each oscillation cycle produces one notch on the steel surface. Thus regularly
spaced notches appear on the steel surface and the geometry of the flux channel is as shown
in Figure 3. The pitch of oscillation marks is equal to the withdraw speed of the solid steel
multiplied by the period of one oscillation cycle. If we denote the period of one oscillation
cycle ast∗c and the pitch of the notches as1z∗, then we have

t∗c =
2π

ω
, 1z∗ = 2π

ω
U, (2.1)

whereω andU denote the angular frequency of oscillation and the casting speed, respectively.
Further, we note that, as the casting moves downwards, the solidified steel shell increases

in thickness and cools which consequently causes the casting to contract. The deformation
of the solidified steel shell is due to both thermal contraction of steel and the difference
of liquid pressures inside and outside the shell. An exact analysis requires solving a three-
dimensional thermal viscoelastic (or thermal viscoelastic-plastic) problem which would be
extremely difficult. To facilitate the analysis, while retaining the fundamental physics of the
problem, we adopt the strategy of keeping the model for the solidified layer as simple as
possible. Above the solidification point, the steel is very soft and thus the steel-flux interface
is allowed to move toward and away from the mould wall as the lubrication pressure varies.
Below the solidification point, the solidified steel shell is assumed to be very stiff, that is, the
deformation due to the lubrication pressure is assumed to be negligible. The omission of the
deformation due to the lubrication pressure, although affecting the accuracy of the estimation
of total deformation, is expected to still retain the fundamental physics regarding the formation
of oscillation marks. Because firstly, for a particular horizontal cross-section, the pressure-
induced deformation of the section, when it is below the solidification point, is expected to
be much smaller than that when the section is above the solidification point. Secondly, the
purpose of the present work is to analyse the formation of oscillation marks and for this
purpose only the relative deformation at different locations is essential. As every horizontal
cross-section of the steel cast goes through the same path in the casting process, the total
pressure-induced deformation, accumulated during the period when the section moves from
the top to the bottom of the mould, is expected to be approximately the same for different
cross-sections. Thus, the pressure-induced deformation on the lower part of the solidification
point will not significantly affect the relative deformation field. It is also noted that the stiff-
beam assumption for the solidified steel shell has also been used by other researchers (see for
example [6] and [8]). Hence, the thickness of the flux layer at any cross-section with depth
z∗ is equal to the thickness of the layer when it lies atz∗ = z∗0 plus the thermal contraction
due to cooling. If we choose a time coordinatet∗, with t∗ = 0 representing the beginning
of the mould wall downstroke, then at an instantt∗ of the ith oscillation cycle, the cross-
section which lay at solidification pointz∗ = z∗0 at t∗ = 0 of cycle 0 will be in the position
z∗i = z∗0 + Ut∗ + 2πiU/ω, as shown in Figure 3. Thus, as a typical instant of timet∗, a cross
section atz∗ lying betweenz∗i andz∗i+1 was at the solidification point (starting to solidify) at
time t∗0 = t∗ − (z∗ − z∗0 − i1z∗)/U . Thus, we have the relation

s(z∗, t∗)+ h(z∗, t∗)

= s0
[
t∗ − (z∗ − z∗0 − i1z∗)

U

]
+ h0

[
t∗ − (z∗ − z∗0 − i1z∗)

U

]
+ θ(z∗, t∗), (2.2)

whereθ(z∗, t∗) represents the thermal contraction due to cooling during the period when
the cross section travels fromz∗0 to z∗. Assuming that each horizontal section of the mould
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contracts independently of other sections and that the amount of the contractionθ(z∗, t∗) is
the same as that which would occur if the whole section was reduced in temperature from a
uniform value of the melting pointS∗M to the uniform value of the average temperature of the
steel(S∗m + T ∗0 )/2 whereT ∗0 denotesT ∗(s + h, z∗, t∗), we have

θ(z∗, t∗) = λ(S∗m − T ∗0 ), (2.3)

whereλ = εM/2 andε andM are the coefficient of linear thermal expansion of steel and the
distance of the mould surface to the central line, respectively.

3. Transport of flux down the mould

In the pumping-action model of flux flow down the mould originally proposed by Fowkes and
Woods [7], the flow zone is divided into an upper zone and lower zone separated by the so-
lidification point of steel and the dynamics in these zones is analysed separately. By matching
the equations for the flow rate in the upper and lower zones at the transition point, we obtain
a quadratic equation for the determination of the thickness of the flux channel in the upper
zone and consequently the consumption rate of flux. In this section, we follow the Fowkes-
and-Woods pumping-action model [7], but in addition we take into account the presence of
oscillation notches in the steel surface and also discard Fowkes-and-Woods’ assumption of
independence on the volume flow rate with depthz∗.

For the transport of flux in the upper part, Fowkes and Woods [7] assume that the flow of
liquid flux is governed by the lubrication equation

∂P

∂z∗
= ∂

∂x∗

(
µ
∂u

∂x∗

)
+ ρf g∗, (3.1)

whereP(z∗) is the pressure assumed independent ofx∗, µ is the temperature dependent
viscosity,ρf is the flux density,g∗ is the acceleration due to gravity andu(x∗, z∗) denotes
the flux velocity in thez∗ direction. Equation (3.1) is subject to the two boundary conditions
that the surface of the flux layer adjacent to the mould wall moves with the mould wall at the
same speedV and that the other boundary with the molten steel is sufficiently smooth to allow
slipping. Based on these assumptions, the volume flow rate of liquid flux is related toh by the
equation

Ql = V h−1ρg∗
∫ h

0

(h− ζ )2
µ(ζ + s, z∗) dζ, 06 z∗ 6 z∗0, (3.2)

wheres andh denote the thickness of the solid and liquid flux layer respectively. An alternative
expression forQl is given by Fowkeset al. [9] in which the flux/steel interface is assumed to
move downward with casting speedU , instead of imposing a slip condition. However, since
in the casting process, circulation of molten steel occurs in the top part of the mould and the
molten steel near the wall at the top part moves upwards due to the thermal buoyancy force,
we therefore adopt the Fowkes-and-Woods’ assumption for the present work.

Although Equation (3.2) determines neither the flow rate nor the thickness of the lubricat-
ing layer, it indicates that there exists an upper limit for the volume flow rate. For example, in
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Figure 4. Schematic diagram showing the relation betweenQl andh.

the case whenµ is a constant, theQl−h relation is shown in Figure 4 and the maximum flow
rate occurs ath = (µV/1ρg∗)1/2 and has magnitude

Qlmax =
2

3

(
µ

1ρg∗

)1/2

V 3/2. (3.3)

Thus, Equation (3.3) can be used as an upper bound for the volume flow rate. Further, although
the profiles of both the solid flux and liquid flux in the upper part of the solidification point are
not required in the calculation of oscillation marks, as can be seen in later sections, we remark
that equations forh(z∗, t∗) ands(z∗, t∗) can be derived from the principles of heat and mass
conservation, see for example [8] for the partial differential equation which theh(z∗, t∗)must
satisfy.

In order to construct a defining equation for the thickness of the flux channel and the
consumption rate of flux, we now consider the flow of flux in the lower zone. Based on the
standard lubrication theory, we assume that

(a) the flux behaves as a Newtonian fluid,
(b) inertial force can be neglected because the fluid velocity is low and the flux viscosity is

high,
(c) flux velocities in the transverse direction (normal to the mould wall) are negligible com-

pared with those downwards.

Under these assumptions, the fluid flow in the flux channel is governed by the equation of
motion (3.1) and the mass continuity equation

∂(Qs +Ql)

∂z∗
+ ∂(h+ s)

∂t∗
= ∂

∂z∗

(
V s +

∫ h

0
u(s + ζ, t∗)dζ

)
+ ∂(h+ s)

∂t∗
= 0, (3.4)

whereQs andQl denote the flow rates of solid and liquid fluxes respectively, and the solid
flux adjacent to the mould wall has been assumed to move with the mould wall at the same
speedV . In addition, since the flux/steel interface moves downwards with casting speedU ,
we have from (2.2), by partial differentiation, the additional equation

∂(h+ s)
∂t∗

+ U ∂(h+ s)
∂z∗

= ∂θ

∂t∗
+ U ∂θ

∂z∗
, (3.5)

which is solved together with the pressure boundary conditions

P(z∗0) = ρg∗z∗0, P (L) = 0, (3.6)
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and the boundary conditions for velocity on the solid flux/liquid flux and the liquid flux/steel
interfaces,

u(s, t∗) = V (t∗), u(s + h, t∗) = U, (3.7)

where here a noslip condition has been assumed for the interfaces and liquid is assumed to
remain in the flux channel,i.e. L > 0. We remark that in the Fowkes-and-Woods model [7],
the presence of oscillation marks is neglected and thus the cooling surface is approximated
by the doted line shown in Figure 3. In addition, instead of Equations (3.4) and (3.5), it is
assumed thatQl +Qs = Q(t∗).

When the casting process is in smooth operation, the variation of temperature and con-
sequently the thermal contractionθ with time is expected to be much smaller than the variation
along the casting directionz∗. Thus∂θ/∂t∗ is neglected to simplify the analysis, while still
retaining the fundamental feature of the problem. We also note that in an early model [8], both
∂θ/∂t∗ and∂θ/∂z∗ are neglected. Hence, from Equations (3.4) and (3.5), we may deduce

V s +
∫ h

0
u(ζ + s, t∗)dζ − U(h+ s − θ) = QR(t

∗). (3.8)

While from Equations (3.1) and (3.7) we obtain (see Bland [6] and Fowkes and Woods [7] for
similar calculations)

Ql =
∫ s+h

s

u(x, t∗)dx = U [h− f (h)] + Vf (h)− g(h)
(
∂P

∂z∗
− ρf g∗

)
, (3.9)

where

f (h) =
∫ h

0

ζ

µ(ζ + s, z∗) dζ

(∫ h

0

dζ

µ(ζ + s, z∗)
)−1

,

g(h) =
∫ h

0

ζ

µ(ζ + s, z∗) dζ −
(∫ h

0

ζ

µ(ζ + s, z∗) dζ

)2(∫ h

0

dζ

µ(ζ + s, z∗)
)−1

.

(3.10)

On substitution of (3.9) in (3.8) and using (3.6), we obtain the lower zone relation betweenQl

andh,

Ql = QR + U(h+ s − θ)− V s

= 1∫ L
z∗0

dz
g(h)

{
1ρg∗z∗0 + ρf g∗L+ (V − U)

∫ L

z∗0

[s + f (h)]
g(h)

dz

}

+U(h+ s − θ)− V s, z∗0 < z
∗ < L, (3.11)

Just as for Equation (3.2) for the flow of flux in the upper part, Equation (3.11) itself
determines neither the flow rate nor the thickness of flux layer. However, by matching (3.2)
with (3.11) atz∗ = z∗0, we can deduce a useful equation which we detail in the following
section.
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4. Matching upper and lower zone models for flux conservation

From mass conservation, the flow rate of flux evaluated by Equation (3.11) for the lower zone
should be equal to that evaluated by Equation (3.2) for the upper part at their transition point
z∗ = z∗0. Thus, by equating the right-hand side of Equation (3.2) with the right-hand side of
Equation (3.11) atz∗ = z∗0 and noting thatθ(z∗0, t

∗) = 0, we obtain

1ρg∗
∫ h

0

(h0− ζ )2
µ(ζ + s0, z∗) dζ = (V − U)

s0 + h0−
∫ L
z∗0
[s+f (h)]
g(h)

dz∫ L
z∗0

dz
g(h)


−1ρg

∗z∗0 + ρf g∗L∫ L
z∗0

dz
g(h)

− U
∫ L
z∗0

θ
g(h)

dz∫ L
z∗0

dz
g(h)

. (4.1)

To obtain a simpler form of this equation, we consider two special cases. For the first case, we
assume that the viscosity coefficientµ is a constant, and thus form (3.10) we have

f (h) = h

2
, g(h) = h3

12µ
, (4.2)

and substitution of (4.2) in (4.1) gives rise to

1ρg∗

3µ
h3

0 = (V − U)
h0+ s0−

∫ L
z∗0

2s+h
h3 dz

2
∫ L
z∗0

1
h3 dz


−1ρg

∗z∗0 + ρf g∗L
12µ

∫ L
z∗0

1
h3 dz

− U
∫ L
z∗0

θ

h3 dz∫ L
z∗0

1
h3 dz

. (4.3)

For the second case, following Bland [6] we assume that the variation of viscosity with
temperature obeys the Reynolds’ law, that is

µ(x∗, z∗) = Ae−BT
∗(x∗,z∗, t∗), (4.4)

whereA andB denote constants.
As the liquid flux layer is very thin, we assume that at any cross-sectionz∗, the temperature

T ∗ varies linearly withx∗ across the liquid flux layer withT ∗ = T ∗0 (z∗, t∗) onx∗ = s+h and
T ∗ = T ∗m onx∗ = s, that is

T ∗(x∗, z∗, t∗) = T ∗m +
T ∗0 − T ∗m
h(z∗, t∗)

(x∗ − s) (s < x∗ 6 s + h), (4.5)

we have from (4.4)

µ(x∗, z∗) = Ae−BT
∗
m exp

(
−T

∗
0 (z
∗, t∗)− T ∗m
h(z∗, t∗)

B(x∗ − s)
)
, (4.6)



Flux flow and the formation of oscillation marks319

so that from (3.10), we can deduce

f (h) = 1

η

(
η eη

eη
− 1

)
h(z∗, t∗) = F(z∗, t∗)h(z∗, t∗)

g(h) = eBT
∗
m

Aη3
{eη − 1− η2[1− e−η]−1}h3(z∗, t∗) = G(z∗, t∗)h3(z∗, t∗)

 , (4.7)

whereF(z∗, t∗) andG(z∗, t∗) are as defined above and

η(z∗, t∗) = B[T ∗0 (z∗, t∗)− T ∗m]. (4.8)

Substitution of (4.7) in (4.1) yields

1ρg∗2(η0)h
3
0 = (V − U)

s0+ h0

∫ L
z∗0

s+Fh
Gh3 dz∫ L
z∗0

dz
Gh3


−1ρg

∗z∗0 + ρf g∗L∫ L
z∗0

dz
Gh3

− U
∫ L
z∗0

θ

Gh3 dz∫ L
z∗0

1
Gh3 dz

, (4.9)

where

2(η0) = A−1 eBTmη−3
0 (2 eη0 − η2

0 − 2η0 − 2), η0 = η(z∗0, t∗). (4.10)

It is apparent that neither of (4.3) or (4.9) can be solved directly since the determination
s(z∗, t∗), h(z∗, t∗) andθ(z∗, t∗) requires the solution of the temperatureT ∗0 on the steel casting
surface. The necessary heat transfer analysis is carried out in the following section.

5. Governing equations arising from thermal analysis

In the continuous casting process, heat flows from the liquid steel across the layers of solid
steel casting, liquid flux and solid flux, into the surrounding mould from which the heat is
removed by the cooling water. The aim of the heat-transfer analysis is to construct additional
equations relating the thermal variables such as temperature with the flow variables such as
µ, h0, s0 andθ , so that on combining these relations with the defining equations described
in Section 4, a closed system of equations can be formed for the determination of both the
temperature field and the flux flow in the flux channel.

Since the flux layer is very thin, it is reasonable to approximate the temperature profile by
a linear function across the thickness. Thus, on denoting the temperatures on the mould wall,
solid flux surface adjacent to the mould, solid/liquid flux interface and flux/steel interface as
T ∗w , T ∗µ , T ∗m andT ∗0 , respectively, and considering the heat balance on the mould wallx∗ = 0
and solid/liquid flux interfacex∗ = s, we have fors 6= 0 andh 6= 0,

Q = ks
T ∗m − T ∗µ

s
= T ∗µ − T ∗w

R
= m(T ∗w − T ∗∞), (5.1)

and

ρf lf

(
∂s

∂t∗
+ V ∂s

∂z∗

)
= ks

T ∗m − T ∗µ
s

− kl T
∗
0 − T ∗m
h

,

s(z∗0, t
∗) = s0(t∗), s(z∗,0) = ŝ(z∗),

(5.2)
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where ŝ(z∗) denotes thickness of solid flux layer att∗ = 0 and ks and kl denote thermal
conductivities of solid and liquid fluxes, respectively. The determination ofŝ(z∗) requires an
iterative process starting with an initial guess. Fors = h = 0 we have

T ∗w =
S∗m + RT ∗∞

1+mR . (5.3)

In the region of steel we may deduce, in a similar manner to that detailed in Hill and Wu
[10], the governing equations which comprise the heat-conduction equation

ρc

(
∂T ∗

∂t∗
+ U ∂T

∗

∂z∗

)
= k ∂

2T ∗

∂x∗2
, (5.4)

the solid/liquid interface conditions

T ∗(s + h+X∗, z∗, t∗) = S∗m,

k
∂T ∗

∂x∗
(s + h+X∗, z∗, t∗) = ρl

(
U
∂X∗

∂z∗
+ ∂X

∗

∂t∗

)
,

(5.5)

the boundary conditions on the casting steel surface and the symmetric plane

k
∂T ∗

∂x∗
(s + h, z∗, t∗) = kl T

∗
0 − T ∗m
h

,
∂T ∗

∂x∗
(M, z∗, t∗) = 0, (5.6)

and the initial conditions

T ∗(x∗, z∗0, t
∗) = S∗m,

∂T ∗

∂t∗
(x∗, z∗,0) = q0(x

∗, z∗), X∗(z∗0, t
∗) = 0, (5.7)

whereq0 is the time rate ofT ∗ at t∗ = 0 and can be determined through an iterative process
starting with an initial guess. We remark here that in the molten-steel region, transfer of
heat is due to both conduction and convection in the directions ofx∗ and z∗ and thus the
exact heat-transfer equation will be much more complicated than Equation (5.4). However,
by considering the characteristics of heat transfer in continuous casters and the fact that the
temperature variation in molten steel is very small (usually the temperature of molten steel
from the nozzle is only a few degree higher than the solidification temperature), we can make
two simplifications without significantly affecting the accuracy of results. Firstly, as cooling
water is in the channels of the mould wall, the temperature gradient in thex∗-direction is much
larger than that in thez∗-direction, namely∂T ∗/∂x∗ � ∂T ∗/∂z∗. Hence, thez∗-component of
the heat-flow vector (thez∗-conduction term) is neglected as it is negligible compared to that in
thex∗-direction. In other words, the term∂2T ∗/∂z∗2 can be omitted compared to∂2T ∗/∂x∗2.
For a more detailed explanation, we refer readers to Bland [6] and Wu and Hill [5]. Secondly,
we can consider the transfer of heat by convection in the molten-steel region using an effective
thermal conductivity reported by Laitet al. [11] to be about seven times greater than the liquid
thermal conductivity. These two simplifications will eventually lead to Equation (5.4) for the
transfer of heat in the molten steel region.

Assumng thath0(t
∗) ands0(t∗) are known, we observe that Equations (5.1)–(5.7), together

with Equation (2.2), form a closed system which can be solved and the method for the solution
is now discussed.
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From (5.1) we can deduce that

T ∗µ =
ks(1+mR)T ∗m + smT ∗∞
ks(1+mR)+ sm , T ∗w =

m(s + Rks)T ∗∞ + ksT ∗m
ks(1+mR)+ sm , (5.8)

and substitution of (5.8) and (2.2) in (5.2) yields

ρf lf

(
∂s

∂t∗
+ V ∂s

∂z∗

)
= mks(T

∗
m − T ∗∞)

ks(1+mR)+ sm −
kl(T

∗
0 − T ∗m)

s0+ h0+ θ − s . (5.9)

In order to simplify the notation, we now introduce the following unstarred variables defined
by

x = x∗

M
, X = X∗

M
, z = k

ρcUM2
z∗, t = k

ρcM2
t∗,

T (T ∗) = kl(S
∗
m − T ∗)

ks(T ∗m − T ∗∞)+ kl(S∗m − T ∗m)
, H(T ) =

{
T + α; T > 0

[0, α]; T = 0
, (5.10)

α = lkl

c[ks(T ∗m − T ∗∞)+ kl(S∗m − T ∗m)]
,

and where the normalized (or nondimensional) enthalpyH = 0 represents the liquid state at
the fusion pointT = 0 while H = α corresponds to the solid state at the fusion point. In
terms of the new variables the governing equations can be expressed as

∂H

∂t
+ ∂H
∂z
= ∂2T

∂x2
,

∂T

∂x
(1, z, t) = 0,

∂T

∂x
(s + h, z, t) = Mkl

k

[T (s + h, z, t)− Tm]
s0 + h0+ θ − s ,

H(x, z0, t) = 0,
∂T

∂t
(x, z,0) = −ρc

2M2α

kl
q0(x, z), (5.11)

∂s

∂t
+W(t)∂s

∂z
= F̄ [T (s + h, z, t), s],

s(z0, t) = s0(t), s(z, t0) = ŝ(z),
whereTm denotesT (T ∗m), H is defined by (5.10)6 andW(t) andF̄ are, respectively, defined
by

W(t) = V (t)

U
, F̄ (T0, s) = ρlM2

ρj lf kα

{
mks(T∞−Tm)
ks(1+mR)+ms +

kl(T0−Tm)
s0+h0+θ−s

}
. (5.12)

If s0(t) andh0(t) are assumed known, then we can solve the system (5.11) using an iterative
enthalpy scheme. However, sinces0(t) andh0(t) are presently unknown functions which de-
pend on the temperature field, a coupling of the system (5.11) with (4.3) or (4.9) is necessary
in order to solve the problem. A numerical procedure leading to the solution of the coupled
system is presented in the following sections.
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6. Method of solution neglecting latent heat flux

In this section we detail the numerical procedure for the case in which the latent heat of flux
is neglected. The purpose of neglecting latent heat is to simplify the computation. We believe
that this omission may not significantly affect the accuracy, as the flux layer is very thin and
thus the latent heat released by the flux layer is negligible compared to the total heat removed
from the molten steel. Of course, a further study on the influence of the flux latent heat is
certainly useful and that is why we retain the latent heat in the formulation of Section 5. Now
on neglecting the latent heat in the flux, we obtain from Equations (5.11)3,6

k

M

∂T

∂x
(s + h, z, t) = kl(T0− Tm)

h
= mks(Tm − T∞)
ks(1+mR)+ms , (6.1)

whereT0 = T (s + h, z, t) andh = s0+ h0+ θ − s. Further from (6.1) we can deduce that

s(z, t) = 1

τ
h− ks

(
R + 1

m

)
, h(z, t) = τ

1+ τ
{

1+ τ0

τ0
h0+ λ(Sm − T0)

}
, (6.2)

whereτ andτ0 are defined by

τ(z, t) = kl(T0(z, t)− Tm)
ks(Tm − T∞) , τ0 = τ(z0, t). (6.3)

Thus, the surface boundary condition for the steel region (5.11)3 can be simplified to give

T (s + h, z, t)− [β + γ T (s + h, z, t)]∂T
∂x
(s + h, z, t) = 1. (6.4)

whereβ(t) andγ are defined by

β = k

Mkl

{
1+ τ0

τ0
h0+ (ks − 1)

(
R + 1

m

)}
,

γ = λk

Mk2
l

{ks(T ∗m − T ∗∞)+ kl(S∗m − T ∗m)}.
(6.5)

Given a functionh0(t), the temperature fieldT (x, z, t) is completely defined by (5.11)1,2,4,5

and (6.4) which can be solved by an enthalpy scheme similar to that detailed by Hill and
Wu [10].

Sinceh0(t) as given by either (4.3) or (4.9) remains unknown and depends on the temper-
ature field to be solved, coupling of the governing heat-transfer equations with (4.3) or (4.9) is
necessary. Proceeding to describe the solution scheme, we first simplify Equation (4.3) using
(6.2) to obtain

h3
0+ ph0+ q(h0) = 0, (6.6)

wherep andq(h0) are defined by

p = −3µ(V − U)
1ρg∗

(1+ τ0)

τ0
,

q(h0) = 3µ(V − U)
1ρg∗

ks
(
R + 1

m

)
+
∫ L
z∗0

2s+h
h3 dz

2
∫ L
z∗0

1
h3 dz


+ 1

41ρ

1ρz∗0 + ρfL∫ L
z∗0

1
h3 dz

− 3µU

1ρg∗

∫ L
z∗0

θ

h3 dz∫ L
z∗0

1
h3 dz

,

(6.7)
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with s, h given by (6.2).
The iteration procedure for solving the temperature field andh0(t) is summarized as fol-

lows

(a) assign an initial valueh0
0(t) to h0(t);

(b) calculate the temperature fieldT i(x∗, z∗, t∗) corresponding tohi0(t) using the enthalpy
method, then determine the location of the solidification pointz∗0 from T i(x∗, z∗, t∗);

(c) evaluatehi thenpi, qi using (6.2) and (6.7) based on the computed temperature fieldT i

andhi0 (the integrals involved are evaluated numerically using the composite trapezoidal
rule);

(d) solve Equation (6.6) forhi+1
0 ;

(e) replacehi0 by hi+1
0 then go back to step (b);

(f) the process repeated until successive calculations forh0(t) differ negligibly.

With above algorithm for solving the temperature field andh0(t), the procedure for calcu-
lating the geometry of the flux flow channel is as follows

(a) choose initial guesses forŝ(z) andq0(x, z);
(b) determine the geometry of the flux channel by calculatingh0(ti) and updatingh(z, ti) for

ti = 1t , 21t, . . . , n1t , wheren1t is the time taken for the casting to move downwards
from the solidification point to the exit of the mould;

(c) updatês(z) andq0(x, z) using the results obtained in (b) and then perform step (b) again.
The process is repeated until convergence is achieved.

7. Numerical results and conclusions

In this section we illustrate the procedure of the previous section in the case when the lat-
ent heat of flux is neglected. Based on the model presented, a computer program has been
developed for the calculation of flux flow rate and the prediction of oscillation marks on the
steel surface. In the following we present the results obtained using the algorithm given in
Section 6. Typical values for the geometrical and physical data were chosen as follows

Table 1. Numerical data.

M = 0·118 m kl = 2·25 W/m◦C g∗ = 9·8 m/s2 U = 0·0045 m/ s

L = 0·2980 m ε = 0·00003◦C−1 R = 0·0002 m2◦C/W V = 0·003ω cosωt m/s

S∗m = 1500◦C ρ = 7800 kg/m3 m = 10,000 W/m2◦C ω = 40(2π/60)rad/s

T ∗m = 1100◦C l = 272 J/g µ = 0·5 Pa· s ρf = 2930 kg/m3

ks = 1·5 W/m◦C

In this example, we consider the case in which liquid remains in the full length of flux
channel,i.e., L is taken to be the length of mould wall.
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Figure 5. The computed geometry of oscillation
marks on steel surface.

Figure 6.Effect of mould oscillation amplitude on the
depth of oscillation marks.

.

Figure 7. Effect of casting speedU on the depth of
oscillation marks.

Figure 8. Effect of flux viscosityµ on the depth of
oscillation marks.

.

Figure 5 shows the computed geometry of the oscillation marks on the steel surface. The
oscillation marks are regularly spaced with distance about 6·75 mm and depth about 0·9 mm.
The prediction of the oscillation mark depth is in the same order of actual depth 0·5 to 2 mm
(King et al. [8], Please and Dewynne [1], and Cramb and Mannion [12]). Each cycle of mould
oscillation includes two distinct stages. In stage one, the gap between the mould wall and the
solidified steel shell is open at the solidification point. The gap size varies with time and thus
one oscillation mark is produced. In stage two, the gap is closed at the solidification point,
which leads to a nearly straight line segment between each two consecutive marks. The shape
of the notches appears like hemispherical, which displays certain difference with the actual
shape. The actual notches usually are between hemispherical and cusp shaped (Please and
Dewynne [1]). The difference between the actual shape and the computed shape probably is
caused by our simplifying assumptions such at the stiff beam assumption for the solidified
steel shell. To investigate the effect of mould oscillation on the formation of oscillation marks,
the amplitude of mould oscillation is varied from 2·5 mm to 7·5 mm and Figure 6 shows the
effect of oscillation amplitude on the depth of oscillation marks. The effects of casting speed



Flux flow and the formation of oscillation marks325

and flux viscosity on the geometry of the oscillation marks are respectively shown in Figures 7
and 8. The results indicate that the depth of oscillation marks increases with increasing oscil-
lation amplitude and reducing casting speed, which is in agreement with experiment results at
least in qualitative sense.

In conclusion we have extended a previously proposed mechanism for the formation of
oscillation marks in the continuous caster which is based on a complete mathematical model,
involving coupled heat transfer, solidification and flux flow. The model is illustrated with a
numerical example which demonstrates that the appearance of oscillation marks can indeed
be predicted by the model and that the depth of marks is critically dependent on the magnitude
of the viscosity of the flux, the casting speed and the amplitude of mould oscillation. Although
the trends of the model predictions appear to be correct, it should be emphasized that many
simplifying assumptions have been made in the development of the model and thus the results
should only be used in a qualitative sense. Further work is suggested to construct a more soph-
isticated model taking into account the latent heat of flux and the elastic-plastic deformation
of the solidified steel shell due to the lubrication pressure. However, the new model will be
much more complicated and its solution requires intensive numerical work.

List of symbols

A,B constants involved in (4.4) and
Section 7

G,H functions defined by (4.7)

L length of liquid flux zone (inz∗
direction)

M the half thickness of cast steel

P(z∗) pressure in liquid flux (assumed
independent ofx∗)

Ql flow rate of liquid flux

Qs flow rate of solid flux

Q Ql +Qs
QR defined by (3.8)

R interface thermal contact resistance

S∗m melting temperature of steel

T ∗(x∗, z∗, t∗) temperature

T (x, z, t) normalized temperature of liquid
flux

T ∗m solidification temperature of liquid
mould powder

T ∗∞ temperature of cooling water

T ∗w temperature on mould wall

T ∗µ temperature of solid flux on its in-
terface with mould wall

T ∗0 temperature on casting surface

U casting speed (assumed constant)

V (t) velocity of mould wall

W(t) non-dimensional mould wall velo-
city (see (5.12))

X∗(z∗, t∗) physical coordinate of the steel phase
change boundary

X(z, t) non-dimensional coordinate of the
steel phase change boundary

c specific heat of steel

f (h), g(h) functions defined by (3.10)

g∗ acceleration due to gravity

h(z∗, t∗) thickness of liquid flux layer

h0(t
∗) thickness of liquid flux layer at the

solidification point

k thermal conductivity of steel

ks thermal conductivity of solid flux layer

kt thermal conductivity of liquid flux
layer

l latent heat of steel

lf latent heat of flux

m surface heat transfer coefficient

p, q defined by (6.7)

s(z∗, t∗) thickness of solid flux layer

s0(t
∗) thickness of solid flux layer at the so-

lidification point

t∗ time

t∗c period of mould oscillation cycle

u(x∗, z∗) flux velocity

z∗ coordinate shown in Figure 3

z∗0 thickness of the liquid flux layer above
the solidification point
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α,β, γ positive constant given by (5.10)
and (6.5)

ε coefficient of linear thermal expan-
sion of steel

η, η0 defined by (4.8) and (4.10) respect-
ively

λ positive constant defined byεM/2

µ viscosity of liquid flux

2 defined by (4.10)

θ(z∗, t∗) amount of contraction of steel

ρ density of steel

ρf density of flux

1ρ ρ − ρf
τ defined by (6.3)

ω angular frequency of mould oscillation

ζ positive parameter used in (3.2), (3.4)
and (3.10)

1z∗ distance between two successive oscil-
lation marks

Note that throughout the superscript∗
denotes a physical quantity.
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